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Abstract 

This comprehensive review paper delves into the essential metrics utilized for the 

evaluation of image binarization algorithms. Image binarization, a pivotal preprocessing 

step in many computer vision and image processing systems, poses significant challenges 

regarding the quality of output. Hence, a diverse range of evaluation metrics has been 

introduced, each bearing its strengths and limitations. This paper aims to elucidate the 

fundamental metrics such as Mean Squared Error (𝑀𝑆𝐸), Peak Signal-to-Noise Ratio 

(𝑃𝑆𝑁𝑅), F-measure, Pseudo F-measure, and Distance-Reciprocal Distortion Measure 

(𝐷𝑅𝐷), explicating their definitions, interpretations, advantages, and disadvantages. 

Furthermore, particular attention is given to the influential Document Image Binarization 

COntest (DIBCO) standards that have significantly shaped the field of image binarization 

evaluation. A comparative analysis of these metrics is performed, highlighting their 

effectiveness, accuracy, and suitability under diverse scenarios. This paper also identifies 

the existing limitations and proposes potential directions for future research in the realm of 

image binarization evaluation. 
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1. Introduction 

1.1. Background on Image Binarization 

Image binarization consists to the process of converting a gray-scale image into binary 

format, delineating objects of interest from the background [1]. It plays a pivotal role in 
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document image analysis and other computer vision tasks, serving as a foundational 

preprocessing step [2]. It simplifies complex images by reducing multilevel intensity 

information to two levels, foreground and background, thus accentuating regions of interest 

and making subsequent analyses more manageable. The quality of binarization can 

significantly impact the performance of these subsequent processes. Numerous algorithms 

have been proposed to conduct this task, starting from classic methods like Otsu's method 

[3], Niblack's method [4], and Kapur's entropy-based method [2], up to more recent deep 

learning-based approaches [5]. 

 

1.2. Importance of Evaluation Metrics 

The efficacy of the binarization process must be evaluated because the quality of 

binarization can have a substantial impact on downstream tasks such as object 

identification, recognition, and tracking. Several evaluation metrics have been proposed to 

quantify the performance of binarization methods [6][7][8][9]. Metrics such as the Mean 

Squared Error (𝑀𝑆𝐸), Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅), and F-measure provide a 

quantitative analysis of the binarization output, thus facilitating the comparison and 

selection of optimal binarization algorithms for different applications. Additionally, metrics 

like Distance-Reciprocal Distortion Measure (𝐷𝑅𝐷) and Pseudo F-measure have also been 

introduced to address specific limitations of previous metrics [6][7]. These metrics offer 

different insights into the binarization performance, including the accuracy of foreground-

background separation, noise reduction, and preservation of details. 

 

1.3. Brief Introduction to DIBCO Evaluations 

The Document Image Binarization COntest (DIBCO) has been a significant influence in 

the topic of document image binarization [10][11][12]. DIBCO provides a standard dataset 

and evaluation methodology, making it possible to compare binarization techniques 

objectively. Over the years, DIBCO has introduced several novel metrics tailored for 

document image binarization evaluation, including Pseudo F-measure and Distance-

Reciprocal Distortion Measure [6][10]. The insights from DIBCO evaluations have led to 

creating improved binarization methods and continue to shape the landscape of image 

binarization research. 

 

1.4. Aim and Structure of the Paper 

This study intends to give an in-depth examination of the metrics used to evaluate picture 

binarization methods, with a special emphasis on DIBCO standards. We first provide an 

overview of image binarization and the need for various evaluation metrics. We then detail 

each primary metric used, discussing their definitions, interpretations, advantages, and 
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drawbacks. Attention is given to DIBCO's approach to image binarization evaluation. We 

subsequently present a comparative analysis of these metrics, addressing their relative 

strengths and limitations. Finally, we identify potential future directions in image 

binarization evaluation metrics. 

 

2. Overview of Image Binarization 

2.1. Definition and Utility of Image Binarization** 

Image binarization, a critical preprocessing step in many computer vision systems, 

transforms from a grayscale image or color image a binary image, which consists of only 

two colors or intensity levels, commonly black and white [1]. This conversion helps 

segregate the object of interest, usually marked black, from the background, marked white 

(or the other way around, depending on the application), making it easier to analyze and 

process the image. Binarization has been a staple in a variety of applications, ranging from 

document image analysis [2] to object tracking, character recognition, and many more. 

 

2.2. Common Challenges and Issues in Image Binarization 

While the concept of binarization seems straightforward, its execution can be fraught with 

several challenges. Inadequate illumination, shadows, low contrast, noise, and variability 

of foreground and background intensities all pose significant issues in image binarization 

[13]. In document analysis, additional complexities such as varying text sizes, faded print, 

ink seepage, and paper degradation further complicate the binarization process [10]. Thus, 

a universal binarization method that works effectively under all conditions is yet to be 

established, which makes the task of binarization a vibrant area of ongoing research [14]. 

 

2.3. Existing Solutions and Algorithms for Image Binarization 

Numerous algorithms have been developed to address the issues associated with image 

binarization. Some of the early techniques include Otsu's method, which uses the threshold 

that minimizes the within-class variance of black and white pixels [3], and Niblack's 

method, which employs local mean and standard deviation to adaptively select the threshold 

[4]. Kapur et al. devised an entropy-based method that utilizes the entropy of the histogram 

for threshold selection [2]. Other notable methods include a recursive thresholding 

technique proposed by Cheriet et al. [8] and Howe's document binarization technique that 

automatically tunes the parameters [9]. In the era of deep learning, Tensmeyer and Martinez 

[5] proposed a fully convolutional neural network approach to binarization, demonstrating 

superior performance over many traditional methods. 
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2.4. Importance of Evaluation Metrics for Image Binarization 

With the diversity of binarization algorithms, a fair and objective comparison of their 

performance is crucial, which is where evaluation metrics come into play [6][7][15]. These 

measures quantify the success rate of binarization methods, facilitating the selection of the 

optimal method for a given application. They assess how well the algorithm can separate 

the object of interest from the background and preserve the object's details. Various metrics 

have been proposed, each providing different insights into the binarization performance. 

These include Mean Squared Error - 𝑀𝑆𝐸, Peak Signal-to-Noise Ratio - 𝑃𝑆𝑁𝑅, F-measure, 

Pseudo F-measure, and Distance-Reciprocal Distortion Measure – 𝐷𝑅𝐷 [6][7]. 

Furthermore, DIBCO's competitions have shaped the evaluation landscape by introducing 

novel metrics and a standardized evaluation methodology [10][11][12]. 

 

3. Overview of Image Binarization Metrics 

3.1. Introduction to the Concept of Metrics 

Metrics, in the context of image binarization, are quantitative measures employed to 

evaluate the performance of binarization algorithms [1]. They are vital tools for discerning 

the quality of the binarization output and comparing the effectiveness of various 

binarization methods. These metrics, applied to the binarized images, provide an objective 

measure of how well an algorithm has performed the task of separating the foreground 

(object of interest) from the background. They form the basis of robust and objective 

analysis, thereby driving the evolution of increasingly refined binarization algorithms [15]. 

 

3.2. Need for Different Kinds of Metrics 

The diverse challenges and intricacies of the binarization process have led to the need for a 

variety of evaluation metrics. Each metric offers unique insights into the binarization output 

and addresses different aspects of the binarization process [6][7][15]. For instance, Mean 

Squared Error (𝑀𝑆𝐸) and Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅) are employed to assess the 

overall difference between the binarized image and the ground truth. In contrast, F-measure, 

Pseudo F-measure, and Distance-Reciprocal Distortion Measure (𝐷𝑅𝐷) are more focused 

on the structural preservation and distortion aspects [6][7]. Therefore, different metrics 

serve different purposes and can collectively provide a holistic assessment of a binarization 

algorithm's performance. 
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3.3. General Explanation of Common Metrics 

The common metrics used in the evaluation of image binarization are diverse, each offering 

unique insights. 

 

3.3.1. Mean Squared Error (𝑴𝑺𝑬) 

This metric calculates the average of the squared differences between the corresponding 

pixels in the binarized image and the ground truth, thereby providing a measure of the 

overall difference between the two images [1]. 

 

3.3.2. Peak Signal-to-Noise Ratio (𝑷𝑺𝑵𝑹) 

𝑃𝑆𝑁𝑅 is often used in conjunction with 𝑀𝑆𝐸. It is a measure of the peak error and provides 

an approximation of the perceived reconstruction quality of the binarized image [1]. 

 

3.3.3. F-measure 

The F-measure is a harmonic means of precision and recall, two commonly used measures 

in information retrieval and machine learning. Precision is a binarization algorithm's 

capacity to properly identify foreground pixels, whereas recall measures the algorithm's 

ability to find all foreground pixels in an image [6]. 

3.3.4. Pseudo F-measure and Distance-Reciprocal Distortion Measure (𝑫𝑹𝑫) 

These metrics were introduced during the DIBCO competitions and aim to address some 

limitations of the F-measure and to provide a more comprehensive evaluation that takes 

into account both global and local distortions [7][10]. 

Collectively, these metrics serve as a reliable means for evaluating and comparing the 

performance of different image binarization algorithms [6][7][10][11][12]. 

 

4. Evaluation Metrics for Image Binarization 

The evaluation metrics for image binarization aim to quantitatively assess the performance 

of various binarization algorithms. They provide an objective measure of how well an 

algorithm can segregate the object of interest from the background, preserve the details of 

the object, and minimize noise and distortion. In this chapter, we delve into the specifics of 

these metrics, elaborating on their definitions, methodologies, advantages, and potential 

limitations. 
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We discuss in detail Mean Squared Error (𝑀𝑆𝐸) and Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅) 

which measure the global quality of binarization by assessing the overall difference 

between the binarized image and the ground truth [1]. Furthermore, we elaborate on the F-

measure, a widely used metric that considers both precision and recall to provide a more 

balanced performance measure [6]. In addition, we delve into the Pseudo F-measure and 

Distance-Reciprocal Distortion Measure (𝐷𝑅𝐷), two metrics introduced in the Document 

Image Binarization COntest (DIBCO). These metrics, tailored for this process, are focus on 

assessing global and local distortions in the binarized image [6][7][10]. 

We also touch upon other less common but equally significant metrics used in image 

binarization and their applications. By dissecting these metrics, we aim to provide a 

comprehensive understanding of how the performance of binarization algorithms is 

quantified and compared, and how these evaluations inform the selection of the optimal 

binarization method for specific applications [6][7][10][11][12][15]. 

 

4.1. Mean Squared Error (𝑴𝑺𝑬) 

The Mean Squared Error (𝑀𝑆𝐸) is a commonly used metric for quantifying the difference 

between two images, typically a binarized image and its corresponding ground truth [1]. It 

essentially evaluates the average squared difference between the corresponding pixels of 

the two images. 

𝑀𝑆𝐸 can be represented mathematically as follows: 

𝑀𝑆𝐸 =  
1

𝑀𝑁
∑ ∑(𝐼(𝑖,𝑗) + 𝐾(𝑖,𝑗))

2
𝑁

𝑗=0

𝑀

𝑖=0

 

where 𝐼(𝑖,𝑗) and 𝐾(𝑖,𝑗)are the pixel intensities at location (𝑖, 𝑗) in the binarized image and 

ground truth. 𝑀 and 𝑁 are the dimensions of the images. 

The interpretation of 𝑀𝑆𝐸 is straightforward: a smaller 𝑀𝑆𝐸 indicates a lesser difference 

between the two images - binarized image and ground truth, signifying a better performance 

of the binarization algorithm. In other words, a binarization method with a lower 𝑀𝑆𝐸 has 

a higher fidelity to the original image [15]. The primary advantage of 𝑀𝑆𝐸 is its simplicity 

and ease of computation, which makes it a popular choice in various image processing tasks 

[15]. Moreover, it provides a global measure of the overall difference between the two 

images - binarized and ground truth, offering a comprehensive assessment of the 

binarization quality. 

However, 𝑀𝑆𝐸 also has certain limitations. Firstly, it treats all errors equally, regardless of 

their spatial distribution or relevance to human perception. As a result, it might not align 

perfectly with the human visual perception of the quality of binarized images [6]. Secondly, 

it provides a global measure and can be overly sensitive to extreme values, thereby failing 
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to capture local distortions effectively [7]. This is particularly relevant in document image 

analysis where preserving local details, such as text structure, is crucial [10]. Despite these 

drawbacks, 𝑀𝑆𝐸 remains a fundamental and widely used metric in the evaluation of image 

binarization algorithms due to its simplicity and interpretability [1][15]. 

 

4.2. Peak Signal-to-Noise Ratio (𝑷𝑺𝑵𝑹) 

The Peak Signal-to-Noise Ratio - 𝑃𝑆𝑁𝑅 - is another broadly used metric in image 

processing, often employed in conjunction with the Mean Squared Error - 𝑀𝑆𝐸 [1]. The 

𝑃𝑆𝑁𝑅 is a measure of the highest possible power of a signal relative to the power of 

corrupting noise, providing an approximation of the perceived reconstruction quality of the 

binarized image. 

𝑃𝑆𝑁𝑅’s mathematical representation is as follows: 

𝑃𝑆𝑁𝑅 =  10 ∙  𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)  

where 𝑀𝐴𝑋 is the greatest pixel value achievable in the image. In the case of 8-bit grayscale 

images, the MAX value is 255. 

𝑃𝑆𝑁𝑅 provides an estimate of the quality degradation due to the noise introduced by the 

binarization process. A higher 𝑃𝑆𝑁𝑅 suggests a better quality of the binarized image, 

corresponding to less noise or distortion introduced by the binarization algorithm [15]. One 

of the key advantages of 𝑃𝑆𝑁𝑅 lies in its interpretability: the 𝑃𝑆𝑁𝑅 value can be intuitively 

understood as it is measured in decibels (dB). A higher 𝑃𝑆𝑁𝑅 signifies a greater signal 

relative to the noise, indicating a higher image quality [1]. 

However, similar to 𝑀𝑆𝐸, 𝑃𝑆𝑁𝑅 also has its limitations. While 𝑃𝑆𝑁𝑅 provides a useful 

approximation of reconstruction quality, it may not always reflect the subjective quality 

perceived by the human eye [6]. Certain distortions that are perceptually significant might 

yield high 𝑃𝑆𝑁𝑅 values, causing a disconnect between the numerical evaluation and the 

visual quality of the binarized image. Furthermore, like 𝑀𝑆𝐸, 𝑃𝑆𝑁𝑅 is a global measure 

and might not be sensitive to local distortions in the binarized image [7]. Nonetheless, due 

to its relative simplicity and interpretability, 𝑃𝑆𝑁𝑅 remains a commonly used metric in the 

field of image binarization [1][15]. 

 

4.3. Specificity, Sensitivity (or Recall), and Precision 

Specificity, Sensitivity (or Recall), and Precision are fundamental metrics used in binary 

classification tasks, including image binarization. Together, they provide a comprehensive 

view of an algorithm's performance [6][15]. 
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4.3.1. Precision 

The fraction of true positive predictions (foreground pixels accurately detected) out of all 

positive predictions made by the algorithm is measured by this statistic. It is calculated as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Here, 𝑇𝑃 represents true positives and 𝐹𝑃 stands for false positives (background pixels 

incorrectly identified as foreground). Higher Precision indicates the algorithm's reliability 

in predicting a pixel as part of the foreground, reducing false alarms [6]. 

 

4.3.2. Sensitivity (or Recall) 

This metric quantifies the proportion of true positive instances successfully identified by 

the algorithm. Mathematically, it is defined as: 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑁 denotes false negatives (foreground pixels incorrectly identified as background). Higher 

Sensitivity means the algorithm is proficient at detecting all the foreground pixels, reducing 

missed detections [6]. 

 

4.3.3. Specificity 

This metric quantifies the proportion of true negative instances (background pixels) that are 

correctly identified by the algorithm. It is calculated as: 

Specificity =  
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑁 denotes true negatives. A higher Specificity indicates that the algorithm has fewer false 

alarms for background pixels [15]. 

Together, these metrics provide a nuanced view of an algorithm's performance, balancing 

its accuracy for both foreground and background pixels while considering its propensity for 

false positives (Precision) and false negatives (Sensitivity). 

However, each of these metrics captures only one aspect of the performance, which might 

lead to an incomplete picture. For instance, an algorithm may have high Precision but low 

Sensitivity, indicating it is overly conservative in predicting foreground pixels, or vice versa 

[6][15]. Furthermore, these metrics, being global, may not fully capture local distortions in 

the binarized image, an issue addressed by more complex metrics like the Pseudo F-
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measure and the Distance-Reciprocal Distortion Measure (𝐷𝑅𝐷) used in the DIBCO 

competitions [10][11]. Nonetheless, due to their simplicity and interpretability, Precision, 

Sensitivity, and Specificity are widely used as starting points for evaluating binary 

classification algorithms, including those for image binarization [6][15]. 

 

4.4. F-measure 

The F-measure, frequently referred to as the F-score or F1-score, is a metric that blends the 

two crucial components of information retrieval: precision and recall [6]. It serves as a 

harmonic mean of these two values, providing a balanced measure of a binarization 

algorithm's ability to accurately identify foreground pixels (precision), and its capacity to 

find all the foreground pixels in the image (recall). 

The mathematical representation of the F-measure is given as follows: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

Where Precision is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
, and Recall is defined as 

𝑇𝑃

𝑇𝑃+𝐹𝑁
. Here, 𝑇𝑃 denotes true 

positives, means the foreground pixels correctly identified by the binarization algorithm. 

𝐹𝑃 signifies false positives, for this case the background pixels incorrectly classified as 

foreground, and 𝐹𝑁 represents false negatives, the foreground pixels incorrectly classified 

as background [6]. 

The interpretation of the F-measure is quite intuitive: a higher F-measure indicates better 

performance of the binarization algorithm. An F-measure of 1 denotes perfect precision and 

recall, whereas an F-measure of 0 implies complete failure in both aspects [6]. 

The primary advantage of the F-measure lies in its ability to provide a balanced evaluation 

of an algorithm's performance. It ensures that neither precision nor recall is 

disproportionately emphasized, mitigating the risk of an overly optimistic or pessimistic 

assessment [6]. 

However, the F-measure is not without its drawbacks. It assumes equal importance of 

precision and recall, which may not always be the case in certain applications. Furthermore, 

like the previously discussed metrics, the F-measure provides a global assessment and may 

not capture local distortions or structural details effectively [7]. In response to these 

limitations, metrics like the Pseudo F-measure and Distance-Reciprocal Distortion Measure 

(𝐷𝑅𝐷) were introduced in the DIBCO competitions [10][11][12]. Despite these caveats, the 

F-measure remains a widely utilized metric in image binarization due to its interpretability 

and the balance it offers between precision and recall [6]. 
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4.5. Pseudo F-measure as used in DIBCO 

The Pseudo F-measure is a variant of the F-measure metric introduced in the Document 

Image Binarization COntest (DIBCO) to provide a more comprehensive evaluation of 

image binarization algorithms [10]. The traditional F-measure considers pixels individually 

and might not account for local structural distortions in the binarized image. The Pseudo F-

measure addresses this by incorporating local pixel context into the metric, essentially 

measuring the degree to which the binarized image preserves the structure of the original 

image. 

The calculation of the Pseudo F-measure involves the use of a pseudo recall and precision, 

defined by convolving the binary ground truth and binarization result images with a 

weighted circular window [10][12]. Then, the Pseudo F-measure is calculated in a similar 

manner to the traditional F-measure: 

𝑃𝑠𝑒𝑢𝑑𝑜 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑠𝑒𝑢𝑑𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑃𝑠𝑒𝑢𝑑𝑜 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑠𝑒𝑢𝑑𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑃𝑠𝑒𝑢𝑑𝑜 𝑅𝑒𝑐𝑎𝑙𝑙
 

The Pseudo Precision and Pseudo Recall are integral components of the Pseudo F-measure 

and they are calculated using the concepts of convolution and a specific weighted circular 

window. 

First, let's define a binary image B, where 𝐵(𝑖, 𝑗) represents the pixel at location (𝑖, 𝑗). For 

a grayscale image, 𝐵(𝑖, 𝑗)  = 1  represents a foreground (or black) pixel, while 𝐵(𝑖, 𝑗)  = 0 

represents a background (or white) pixel. 

Now, the binary ground truth image and the binary result image obtained from a binarization 

algorithm are convolved with a weighted circular window 𝑊 of radius r. The convolution 

operation is represented as: 

𝐶 =  𝐵 ⨂ 𝑊 

where ⊗ denotes the convolution operation. The weighted circular window 𝑊 is defined 

as: 

𝑊(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−(
𝑥2+𝑦2

2𝜎2 )
 

where (x, y) are coordinates in the window, and σ is a parameter related to the size of the 

window. 

The Pseudo Precision and Pseudo Recall are then computed using these convolved images. 

The Pseudo Precision (𝑃𝑃) is calculated as: 

𝑃𝑃 =
∑ ∑ 𝐶𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑖,𝑗) ∙ 𝐺(𝑖,𝑗)𝑗𝑖

∑ ∑ 𝐶𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑖,𝑗)𝑗𝑖
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where 𝐶𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑖,𝑗) is the result of convolving the binarization result image with the 

window 𝑊, and 𝐺(𝑖,𝑗) is the ground truth binary image. 

The Pseudo Recall (𝑃𝑅) is calculated as: 

𝑃𝑅 =
∑ ∑ 𝐶𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑖,𝑗) ∙ 𝐵(𝑖,𝑗)𝑗𝑖

∑ ∑ 𝐶𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑖,𝑗)𝑗𝑖
 

where 𝐶𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ(𝑖,𝑗) is the result of convolving the ground truth image with the window 

𝑊, and 𝐵(𝑖,𝑗) is the binarization result binary image [8,14]. 

These measures capture the degree to which the binarization result matches the local 

structure of the ground truth image, with a higher Pseudo Precision or Pseudo Recall 

suggesting a better match to the local structure. In the context of interpretation, a higher 

Pseudo F-measure indicates a better preservation of local structural information, leading to 

a higher quality binarized image [10]. One of the primary advantages of the Pseudo F-

measure is its ability to evaluate both global and local distortions, making it a more sensitive 

and comprehensive measure for document image binarization [10][12]. 

However, the Pseudo F-measure is not without its drawbacks. The computation of Pseudo 

F-measure is more complex than traditional global metrics due to the requirement of 

convolving images with a weighted window. Moreover, as with any metric, the Pseudo F-

measure might not capture all aspects of image quality and should ideally be used in 

conjunction with other metrics for a comprehensive evaluation of a binarization algorithm's 

performance [12]. Despite these limitations, the Pseudo F-measure has been widely adopted 

in the DIBCO evaluations due to its ability to provide a more detailed assessment of 

binarization quality, especially in preserving the structural integrity of document images 

[10][11][12]. 

 

4.6. Generalizations for F-measure and Pseudo F-measure 

The F-measure or F-score is a popular metric in the field of information retrieval and 

machine learning, combining precision and recall into a single number. It is defined as the 

harmonic mean of precision and recall [7]. The F-measure and the Pseudo F-measure may 

be generalized by the introduction of a parameter, beta (β), to allow for differential 

weighting of precision and recall. The generic formula for 𝐹𝛽 is as follows [11]: 

𝐹𝛽 =
(1 + 𝛽2)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The β parameter, in this context, regulates the degree of importance that is given to precision 

over recall [7]. If beta is set to 1, the F-measure becomes the F1-score, meaning that 

precision and recall are equally important [8]. However, by manipulating the beta 

parameter, one can adjust the F-measure to favor either precision or recall. A β greater than 
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1 gives more weight to recall, whereas a beta less than 1 gives more weight to precision [3]. 

The Pseudo F-measure, employed in the DIBCO competitions, is a variant of the F-measure 

and also incorporates the beta parameter to achieve a balance between precision and recall. 

However, unlike the traditional F-measure which utilizes pixel-based precision and recall, 

the Pseudo F-measure employs region-based precision and recall. The beta parameter plays 

the same role in the Pseudo F-measure as it does in the traditional F-measure, i.e., to give 

differential weighting to precision and recall [5]. 

In DIBCO, the beta parameter is usually set to 0.3, indicating that recall (or in the case of 

Pseudo F-measure, Pseudo Recall) is considered more important than precision (Pseudo 

Precision). This is a particularly suitable choice for document image binarization tasks 

where the priority is to retrieve as much text as possible from the image [15]. Nonetheless, 

the appropriate value of the beta parameter can differ based on the specific requirements of 

the task [2]. It should be noted that the selection of beta is critical, and it should reflect the 

relative importance of precision and recall for the particular problem or application under 

consideration [13]. 

 

4.7. Distance-Reciprocal Distortion Measure (𝑫𝑹𝑫) 

The Distance-Reciprocal Distortion Measure (𝐷𝑅𝐷) is a metric specifically designed for 

document image binarization evaluation in the Document Image Binarization COntest 

(DIBCO) [11]. The 𝐷𝑅𝐷 evaluates both the detection error (similar to F-measure) and the 

distortion error due to misclassification, making it more comprehensive than traditional 

metrics. 

The 𝐷𝑅𝐷 is defined as the average of the two terms: distortion of false negatives (𝐷𝐹𝑁) and 

distortion of false positives (𝐷𝐹𝑃). 

𝐷𝐹𝑁 = ∑

𝐷𝑚(𝑖,𝑗)

1 + 𝐷𝑚(𝑖,𝑗)

𝑁𝐹𝑁
 𝐷𝐹𝑃 = ∑

𝐷𝑚(𝑖,𝑗)

1 + 𝐷𝑚(𝑖,𝑗)

𝑁𝐹𝑃
 

𝐷𝑅𝐷 =
𝐷𝐹𝑁 + 𝐷𝐹𝑃

2
 

In these equations, 𝐷𝑚(𝑖,𝑗) denotes the distance from a misclassified pixel at location (i, j) 

to the nearest correctly classified pixel. 𝑁𝐹𝑁 and 𝑁𝐹𝑃 represent the total numbers of false 

negative and false positive pixels, respectively. This distance measure is reciprocal, 

meaning that misclassifications far from correctly classified pixels are penalized more 

heavily [11][12]. 

A smaller 𝐷𝑅𝐷 indicates better performance of the binarization algorithm, as it suggests 

fewer misclassifications and less distortion due to misclassifications. The 𝐷𝑅𝐷 offers 

several advantages over traditional metrics. Firstly, it incorporates both detection and 
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distortion errors, providing a more complete picture of the binarization algorithm's 

performance. Secondly, by considering the distance of misclassified pixels, it gives a 

nuanced assessment that heavily penalizes gross misclassifications [11]. 

However, the 𝐷𝑅𝐷 also has its limitations. The computation of the 𝐷𝑅𝐷 is more complex 

than traditional metrics like 𝑀𝑆𝐸 or 𝑃𝑆𝑁𝑅, requiring the calculation of pixel distances. 

Moreover, 𝐷𝑅𝐷 might be overly sensitive to minor distortions that have negligible impact 

on document readability. Lastly, like all other metrics, it might not fully align with human 

visual perception, necessitating the use of additional metrics for a comprehensive 

evaluation [12]. Despite these limitations, the 𝐷𝑅𝐷 is extensively used in the DIBCO 

evaluations and is recognized for its ability to provide a detailed assessment of binarization 

quality, especially in the context of document images where both detection and distortion 

errors significantly affect the readability and subsequent processing of the documents 

[13,14]. 

 

4.8. Jaccard Index 

Jaccard similarity coefficient or The Jaccard Index, is a measure used to compare sample 

set similarity and variety. It is used as an assessment metric in image binarization to quantify 

the agreement among the binarized output and the ground truth image [14]. 

The Jaccard Index is defined mathematically as the size of an intersection divided by the 

dimension of the union of the two groups. For a binarization task, it can be computed as: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where 𝑇𝑃 denotes true positives, 𝐹𝑃 represents false positives, and 𝐹𝑁 stands for false 

negatives. Essentially, this formula calculates the ratio of correctly identified foreground 

pixels (𝑇𝑃) to all pixels identified as foreground by either the ground truth or the 

binarization algorithm (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) [14]. 

A higher Jaccard Index indicates a greater similarity comparing the binarized image and the 

ground truth, suggesting that the binarization technique is more effective.. The main 

advantage of the Jaccard Index lies in its simplicity and intuitiveness. It directly relates to 

the proportion of correctly classified pixels, providing a clear measure of the binarization 

algorithm's effectiveness [14]. However, the Jaccard Index also has certain limitations. As 

a global metric, it may overlook local distortions in the binarized image. Also, like any 

ratio-based metric, it can be sensitive to the class balance in the image. For instance, in an 

image with many background pixels, a few false positives may not significantly affect the 

Jaccard Index despite potentially causing noticeable visual artifacts [14]. 
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Even of these limitations, the Jaccard Index is a useful metric that complements other 

metrics like the F-measure, Pseudo F-measure, and 𝐷𝑅𝐷, providing a comprehensive 

evaluation of the performance of image binarization algorithms [10][11][14]. 

 

4.9. Dice Coefficient 

The Dice Coefficient is a statistic used to compare the similarity of two samples. It is also 

known as the Sørensen -Dice index or Dice Similarity Coefficient (DSC). It is used to 

analyze the agreement between the binarized picture and the ground truth in the context of 

image binarization [16]. The Dice Coefficient is computed by dividing the size of the 

intersection of the two sets by the total of their sizes. In terms of image binarization, it can 

be expressed as: 

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where 𝑇𝑃 represents true positives, 𝐹𝑃 denotes false positives, and 𝐹𝑁 stands for false 

negatives. Essentially, the Dice Coefficient calculates the proportion of correctly identified 

foreground pixels (2𝑇𝑃) against all pixels identified as foreground plus those incorrectly 

identified as background (2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) [16]. 

A Dice Coefficient closer to 1 suggests a high similarity between the binarized image and 

the ground truth, indicating the superior performance of the binarization algorithm. The 

Dice Coefficient has its strengths in its straightforward interpretability and ease of 

calculation. It provides a balanced measure of the binarization algorithm's effectiveness by 

taking into account both the false positives and false negatives [16]. 

However, the Dice Coefficient, being a global measure, may not capture local errors in the 

binarized image effectively. Like other ratio-based measures, the Dice Coefficient can be 

sensitive to the class imbalance in the image. For example, in a predominantly background 

image, a few misclassified foreground pixels may not significantly affect the Dice 

Coefficient, despite potentially leading to noticeable visual artifacts [16]. Despite its 

limitations, the Dice Coefficient is a valuable measure that, alongside metrics like the F-

measure, Pseudo F-measure, Jaccard Index, and 𝐷𝑅𝐷, provides a well-rounded evaluation 

of image binarization algorithms [10][11][14][16]. 

 

4.10. Matthews Correlation Coefficient (𝑴𝑪𝑪) 

The Matthews Correlation Coefficient - 𝑀𝐶𝐶, sometimes referred as the phi coefficient, is 

a binary classification measure that takes consider true and false positives and negatives. It 

is often considered as a harmonious measure that can be used even though the categories 

differ greatly distinctive in terms of size [12]. In essence, the 𝑀𝐶𝐶 is a correlation 

coefficient between the discovered and anticipated binary classifications. It returns a value 
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within -1 and +1. In this case, +1 denotes flawless prediction, a coefficient of 0 denotes no 

better than an arbitrary estimation, and a coefficient of -1 denotes entire disagreement 

between forecast and observation. The 𝑀𝐶𝐶 can be calculated based on the elements of a 

confusion matrix, which are the True Positives (𝑇𝑃), False Positives (𝐹𝑃), True Negatives 

(𝑇𝑁), and False Negatives (𝐹𝑁), as follows: 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

The main advantage of the 𝑀𝐶𝐶 over other metrics like accuracy, F-score, or the area under 

the ROC curve (𝐴𝑈𝐶), is that it is a more reliable statistical rate that only produces a high 

score if the prediction performs effectively in all four confusion matrix sections 

(𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁), as contrasted with other rates, which can yield misleading results even if 

𝑇𝑃, 𝐹𝑃, 𝑇𝑁 and 𝐹𝑁 rates are imbalanced. In other words, the 𝑀𝐶𝐶 considers both the over-

prediction and under-prediction of each class and gives a balanced measure of the quality 

of binary classifications [12]. 

However, one of the limitations of the 𝑀𝐶𝐶 is that it does not extend naturally to multiclass 

classification and does not have a clear interpretation in terms of probabilities or odds ratios. 

Also, while it does offer a more balanced perspective, it can be more difficult to interpret 

and explain than simpler statistics such as accuracy or F1 score [12]. Although with these 

drawbacks, the 𝑀𝐶𝐶 is widely regarded as a reliable statistical accuracy measure in 

situations where the classes are imbalanced and provides a good complement to other 

evaluation metrics used in image binarization evaluations [12]. 

 

5. Evaluation Metrics in DIBCO Image Binarization Evaluations 

5.1. Overview of DIBCO evaluations 

Document Image Binarization Contest (DIBCO) is a benchmarking initiative that provides 

standard datasets and evaluation methodologies for the field of image binarization [3]. 

Since its inception in 2009, DIBCO has been instrumental in promoting innovative 

solutions for document image binarization, which is a crucial preprocessing step in many 

document image analysis and recognition systems [3]. 

 

5.2. Significance and Influence of DIBCO in the Image Processing Community 

The significance of DIBCO in the image processing community is far-reaching. As an 

international competition, it brings together researchers worldwide, fostering a sense of 

collaboration and competition in advancing image binarization techniques. DIBCO datasets 

are composed of a wide variety of images, including handwritten and printed texts, 

historical documents, and texts under different noises and degradations. These diverse 
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datasets present challenges and opportunities, enabling researchers to develop and test 

robust binarization algorithms that can handle real-world situations [3]. 

 

5.3. Discussion of Metrics used in DIBCO 

DIBCO evaluations employ a comprehensive set of metrics to evaluate the performance of 

binarization algorithms. The F-measure, Pseudo F-measure, 𝐷𝑅𝐷, 𝑃𝑆𝑁𝑅, and 𝑀𝑆𝐸 are all 

part of the evaluation toolkit. Furthermore, DIBCO also introduced other measures like the 

Negative/Positive Rate (𝑁𝑃𝑅), Misclassification Penalty (𝑀𝑃), and Optical Character 

Recognition (OCR) error to evaluate the binarization results [2][3][5][13][15]. 

The F-measure used in DIBCO is a harmonic mean of precision and recall, while the Pseudo 

F-measure introduces weighted factors into the precision and recall calculation, making it 

more sensitive to certain types of errors [2][5]. 𝐷𝑅𝐷 measures the average minimum 

distance between the boundary pixels in the binarized and reference images, providing a 

unique perspective into the quality of binarization [13]. 𝑃𝑆𝑁𝑅 and 𝑀𝑆𝐸 offer measures of 

the error between the binarized and reference images, each with its own strengths and 

weaknesses [4]. 

 

5.4. Comparison of DIBCO's Approach with Other Evaluation Methods 

While other evaluation methods often rely on a single metric or a small set of metrics, 

DIBCO's approach stands out due to its wide-ranging and comprehensive evaluation using 

multiple metrics, which is designed to capture different aspects of binarization performance. 

This multi-metric evaluation approach presents a more complete picture of the binarization 

algorithm's performance, enabling researchers to identify the strengths and weaknesses of 

their algorithms and guide their improvements [3]. 

DIBCO's datasets, evaluation metrics, and methodologies have become a benchmark in the 

field of image binarization. They have significantly contributed to the development of more 

effective and efficient image binarization techniques, leading to improved performance in 

various applications such as document image analysis, OCR, and historical document 

digitization [1][3][6][7]. The influence and significance of DIBCO in the image processing 

community continues to grow, with its datasets and evaluation methodologies being widely 

used and cited in related research [3]. 

 

6. Comparative Analysis of Metrics 

6.1. Discussion on How Different Metrics Relate to Each Other 

In the evaluation of image binarization algorithms, different metrics provide different 

perspectives on the performance of the algorithms. 𝑀𝑆𝐸 and 𝑃𝑆𝑁𝑅, for example, are both 
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error metrics that quantify the difference between the image binarized and the original one. 

𝑀𝑆𝐸 calculates the mean squared difference between pixel intensities, while 𝑃𝑆𝑁𝑅 is based 

on “the ratio between the maximum possible power of a signal and the power of corrupting 

noise” [4]. As such, they are inversely related; a lower 𝑀𝑆𝐸 indicates a higher 𝑃𝑆𝑁𝑅. 

Similarly, the notions of True Positives (𝑇𝑃), False Positives (𝐹𝑃), and False Negatives 

(𝐹𝑁) underpin Precision, Recall, and the F-measure. Precision is the proportion of properly 

recognized positives in comparison to all identified positives (𝑇𝑃 and 𝐹𝑃), whereas recall 

is the proportion of correctly identified positives in comparison to all real positives (𝑇𝑃 and 

𝐹𝑁) [12]. The F-measure is the harmonic mean of Precision and Recall with the goal of 

balancing these two measures [2]. The Pseudo F-measure, as employed in DIBCO, changes 

these calculations by taking weights into account [5]. 

 

6.2. Comparison of Metrics in Terms of Their Effectiveness, Accuracy, and Usability 

In terms of efficacy, accuracy, and usefulness, each measure has advantages and 

disadvantages. 𝑀𝑆𝐸 and 𝑃𝑆𝑁𝑅 are easy to calculate and understand but may not always 

reflect the perceptual quality of the binarized image [4]. The F-measure and Pseudo F-

measure, while they provide a balanced measure, can be sensitive to the choice of the beta 

parameter [2][5]. 𝐷𝑅𝐷, on the other hand, measures the average minimum distance between 

the boundary pixels in the binarized and reference images and can be useful in situations 

where boundary preservation is of importance, such as in text recognition tasks. However, 

the calculation of 𝐷𝑅𝐷 can be computationally intensive [13]. 

The usability of these metrics can depend on the specific requirements of the application. 

In some cases, a simple, easily interpretable metric like 𝑀𝑆𝐸 or 𝑃𝑆𝑁𝑅 might suffice, while 

in other cases, a more sophisticated measure like the Pseudo F-measure or 𝐷𝑅𝐷 may be 

necessary [3][2][13]. 

 

6.3. Case Studies Demonstrating Different Metrics' Performances in Different 

Scenarios 

Several case studies have illustrated the performance of these metrics in different scenarios. 

For example, in the DIBCO evaluations, the Pseudo F-measure was found to be particularly 

effective in identifying algorithms that performed well in preserving text stroke width, an 

essential feature for text readability and subsequent OCR processing [3][5]. On the other 

hand, measures like 𝑀𝑆𝐸 and 𝑃𝑆𝑁𝑅 have been found to be less effective in this context, as 

they do not directly consider structural aspects like stroke width [4]. 

In another study involving historical document image binarization, the F-measure was 

found to be more effective than 𝑃𝑆𝑁𝑅 in assessing the quality of the binarization [10]. This 

shows that the choice of the evaluation metric can significantly impact the perceived 
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performance of binarization algorithms, and the choice of metric should consider the 

specific characteristics and requirements of the application domain [10][5][14]. 

 

7. Limitations and Challenges in Current Evaluation Metrics 

7.1. Identification of Gaps in Current Evaluation Methods 

Despite the range of available evaluation metrics for image binarization, there are still gaps 

in current methods. One of the significant challenges is the lack of consensus on a universal 

metric that can cater to all types of images and applications [8]. While metrics such as 𝑀𝑆𝐸 

and 𝑃𝑆𝑁𝑅 are good for quantifying the overall difference between binarized and reference 

images, they may not capture certain aspects like structural preservation [4]. Conversely, 

more specialized metrics like 𝐷𝑅𝐷 and the Pseudo F-measure are sensitive to certain 

features like boundaries and stroke width but may not be suitable for all types of images 

[4,9]. Another gap is the heavy reliance on ground truth or reference images for the 

computation of most of these metrics [8]. While this approach is ideal for benchmarking 

purposes, it is not always feasible in practical applications where ground truth images may 

not be available. 

 

7.2. Challenges and Issues in Implementing and Interpreting the Metrics 

Implementing and interpreting the metrics presents its own set of challenges. The 

computation of some metrics, such as the 𝐷𝑅𝐷, can be complex and computationally 

intensive, which may not be practical in some situations [13]. In addition, the interpretation 

of results can sometimes be ambiguous due to the trade-off nature of certain metrics like 

Precision and Recall, and their derived metrics such as the F-measure and Pseudo F-

measure [2][5]. 

For metrics like the 𝑀𝑆𝐸 and 𝑃𝑆𝑁𝑅, while they provide a straightforward numerical 

measure of the error, their interpretation in terms of perceptual quality can be non-intuitive 

[4]. High 𝑃𝑆𝑁𝑅 or low 𝑀𝑆𝐸 does not necessarily correlate with a high-quality binarized 

image, especially when the noise is non-uniform or structured. 

 

7.3. Discussion on How These Challenges Might Be Overcome 

To overcome these challenges, future research could focus on developing more 

sophisticated metrics that balance the trade-off between complexity and effectiveness, as 

well as developing methods for metric computation that do not heavily rely on ground truth 

images [8]. One potential approach could be to incorporate machine learning techniques to 

predict the quality of binarized images based on features learned from a large set of training 

images [9]. 
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In terms of interpretation, it might be beneficial to provide guidelines or frameworks for 

interpreting different metrics in different contexts. For instance, a guide on when to use 

𝑃𝑆𝑁𝑅 versus the F-measure based on the specific requirements of the image binarization 

task could be useful. 

Additionally, to address the challenges of interpreting metrics like Precision and Recall, 

future work could focus on developing more intuitive visualizations and explanations of 

these metrics to aid in their understanding and use [11][14]. It's also crucial that future 

research work towards identifying an optimal set of metrics that can be used to evaluate 

binarization algorithms effectively across a wide range of scenarios. 

 

8. Future Directions and Conclusions 

8.1. Suggestions for New Evaluation Metrics or Improvements on Existing Ones 

The field of image binarization evaluation metrics is ripe for innovative advancements. 

While current metrics offer valuable insights, further improvements and new metrics could 

enhance the precision and practicality of these evaluations [14]. As we grapple with the 

trade-off between simplicity and sensitivity, one recommendation is the integration of 

machine learning techniques to enhance metrics [9]. This could potentially lead to metrics 

that can better adapt to various types of images and binarization tasks. 

An alternate approach might be the development of meta-metrics that incorporate multiple 

existing metrics into a single score [8]. This approach could leverage the strengths of 

individual metrics while mitigating their limitations. Similarly, current metrics could be 

refined to be more perceptually relevant. For instance, advancements could be made on 

𝑀𝑆𝐸 and 𝑃𝑆𝑁𝑅 to make their interpretation more intuitively linked to perceived image 

quality [4]. 

 

8.2. Discussion on the Potential Future of Image Binarization Evaluation 

The future of image binarization evaluation holds much potential. As machine learning and 

AI continue to permeate image processing, we expect these technologies to play a 

substantial role in enhancing image binarization evaluation [9]. New methodologies could 

emerge that learn from a diverse range of image data to predict binarization quality, leading 

to more reliable and adaptive evaluation processes. 

Furthermore, as the image binarization field continues to evolve, we anticipate a growing 

interest in specialized metrics tailored to specific applications, such as document analysis 

or medical imaging. The continuing development and expansion of benchmark datasets and 

competitions, like DIBCO, will also be instrumental in driving this research forward [7]. 
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8.3. Summary of Key Findings and Conclusions 

In summary, this paper has provided an in-depth review of various evaluation metrics for 

image binarization, highlighting their respective strengths and weaknesses. The necessity 

for a balanced evaluation strategy that considers both general and task-specific attributes of 

the image binarization problem has been stressed. 

The paper discussed the significant role of DIBCO in shaping the current understanding 

and application of these metrics [7]. We examined the limitations and challenges of current 

metrics and proposed potential directions for future research [13][8]. By combining 

traditional metric-based evaluations with emerging technologies and methodologies, the 

field can move towards more accurate, adaptive, and application-specific evaluations of 

image binarization algorithms [9]. 

As we move forward, it's vital to continue questioning and refining our approaches to ensure 

we are effectively evaluating and improving image binarization techniques. 
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